Glass in some form or another has been used since the dawn of civilization. It appears naturally as obsidian, and the first man-made glass objects date from 3500 BC. The Romans were the first to use glass as an architectural material, with semi-clear glass in windows beginning around 100 BC. Glass production was a highly skilled and labor-intensive process. In the middle ages, stained glass was developed by adding different minerals to molten glass, and there are stunning examples of the technology throughout Europe, some dating back to the 13th century. The technology used for modern mass-production glass is relatively new, dating from around the time of the WWII.

The subject of glazing has many aspects, including emissivity (heat transmission), light transmission, insulating value, leak prevention, wind-resistance, acoustics, sealants, and architectural considerations. The scope of this article is safety glazing, and the areas where inspectors look at the hazards posed by glazing.

The Danger

When a person accidentally impacts glass, there are two immediate dangers. The first is from lacerations due to the large shards that might slice into the person. There have been numerous instances of persons who have died from injuries such as a severed femoral artery (figure 1). Unless pressure is brought to bear immediately on such a wound, the victim can bleed to death in as little as five minutes. The second danger is from the "rebound" effect. The first reaction to impacting glass is to pull back. By then the glass is broken, and during the rebound, the person is pulling away from the sharp broken edges. The result can be deep lacerations that tear off large flaps of skin along with possible deep tissue damage.

Causes of Impact

Most accidents with glass are due to one or more of three contributing factors:

1) Failure to see the glass
2) Slips and falls – even knowing the glass was there, and
3) Intentional breakage.

The rules in building codes and federal standards typically are based on one or more of these factors. Historically, the greatest number of injury accidents has been from shower doors or patio doors. In addition to direct human impact, other situations can pose a hazard. Windows that slam shut or are broken by winds or seismic activity can shatter and injure the occupants.

From Courtroom to Codes

Building codes were silent on the subject of safety glazing until the 1960’s. Glass manufacturers found themselves the subject of numerous lawsuits, and they recognized the need for uniform standards for the industry. The National Safety Council formed a task group with the National Glazing Association, and their studies found an average of 320,000 injuries per year from people impacting glass in doors and windows. They worked to form a standard for impact resistance of glass, and, in 1966, it was accepted as a National Standard and given the designation ANSI Z97.1. From 1968 to 1973, the Glazing Industry Code Committee attempted to lobby states directly for adoption of this standard as part of state building codes for glazing in hazardous locations – those that are subject to human impact. They achieved a small measure of success with some form of adoption in 32 of 50 states, though in many cases the standard only applied to commercial construction. Such codes did not always address the area where the greatest number of injuries were occurring – patio doors and shower enclosures. At the same time, the building code adoption process was complicated by fragmentation among various regional code authoring agencies.

The Consumer Product Safety Commission (CPSC) had been created in 1972. When it opened its (glass) doors in 1973, one of its first tasks was to address the hazards of glass. As the commission worked, there continued to be ample proof that codes and standards needed to be improved. In 1975, 73,000 people were treated in hospital emergency rooms for injuries with architectural glass.
The commission went beyond ANSI Z97.1 and developed a two-tiered standard.

A person will typically bear more of his or her body weight in impact with a large piece of glass than he or she would with a smaller piece. The CPSC standards resulted in Category I glass rated at 150 foot pounds of impact, and Category II glass rated at 400 pounds. Category I is the minimum for glass less than 9 square feet in certain locations (pages 4-6) and Category II for larger glass or more locations with greater degrees of hazard. The federal law is known as CPSC 16 CFR 1201, and they went into effect on July 6, 1977.

These designations may sound familiar, as they are seen on the identifying “bug” used in tempered glazing today ([figure 2]).

Test Procedures

For the CPSC and the ANSI test, a piece of glass is secured to a vertical frame, and a punching bag filled to 100 pounds with lead shot is suspended a half inch in front of the glass. For Class I glass, the bag is lifted away and released at a point where its vertical drop is 18 inches. For Class II, the test requires a vertical drop of 4 feet (400 foot pounds). The glass must either not break, or break into such small shards that the 10 largest do not add up to 10 square inches. In the case of laminated glass that is subjected to the same test, a hole punched in the glass must not allow passage of a 3-inch steel ball rolled over the glass. Further details on the test procedure are available in the Code of Federal Regulations on the web. See the links at the end of this article. They were also specified in UBC Standard 24-2.

Standards of Practice

ASHI’s standards require an inspector to report items which are unsafe. *Unsafe* is defined as “A condition in a readily accessible, installed system or component that is judged to be a significant risk of bodily injury during normal, day-to-day use; the risk may be due to damage, deterioration, improper installation, or a change in accepted residential construction standards.”

When it comes to issues like safety glazing, there is no “grandfathering” of existing non-conforming conditions. Just as the glass isn’t going to stop and read the code before it decides to cut you, inspectors should not be concerned with the age of the property in deciding whether to report this safety condition.

Inspectors are often asked whether a specific glass installation met code at the time of construction, and if replacing the glass would be considered a necessary repair or an upgraded safety enhancement. The answer is a real estate negotiation, not an inspection issue. The inspector’s job is to make a recommendation to mitigate the hazard. Likewise, Realtors® or landlords probably would not be putting themselves in a good spot if they fought to keep a dangerous situation and later saw it result in a serious injury. The inspector’s role is to point out the defect, not to decide who fixes it. Most things that inspectors report as defects in safety glazing conformed to code at the time of construction.

The person with greatest liability would be the installer if they violated the standards of the glazing industry. The glazing industry often will be following a newer and more restrictive code even before the local jurisdiction has adopted it.

Figure 2 – Safety glazing labels

The ANSI standard has since changed, and now includes three impact categories. Class A is similar to CPSC Category II, Class B is similar to CPSC Category I. Class C has a 100-pound rating and only applies to fire-rated non-safety glass. This voluntary standard did not require the classification to be marked on the glass until the 2004 edition. Beginning in 2009, building codes allow glass that is marked with only an ANSI label in areas other than the doors or enclosures for showers, tubs, whirlpools, steam rooms, saunas or hot tubs.

Both the ANSI standard and the CPSC rules provide guidelines for building codes which then identify the specific areas where safety glazing is required. Historically, building codes are developed from the ground up. Proposals initiated by individual building officials or groups work their way up through committees to an eventual vote by the entire conference of the code-making body. In this case, regulations came about from the top down, with a need to conform to the federal law.

When safety glazing codes were first developed, there were three major code-making organizations, ICBO, BOCA, and SBCCI. ICBO’s *Uniform Building Code* 1961 edition was the first to require safety glazing for shower doors. Even before the eventual merger of the old territorial codes into the ICC, codes became fairly consistent by following the federal guidelines.
Types of Glazing

Before looking at the specific locations deemed hazardous, we should review the different types of glass that are available.

Annealed glass (float glass) is the ordinary glass that is cut into stock sheets for packaging and shipping. It can be cut again, and possesses none of the properties of safety glazing. It breaks into sharp shards. A heavier form of this glass is **plate** glass which is formed between high pressure rollers, and in some thicknesses obtains relatively high strength, though it is not safety glass.

Heat Strengthened Glass (H.S. Glass) is annealed glass that goes through a heating and cooling process designed to double its strength in comparison to ordinary annealed glass. It is heat resistant, and may not be cut after manufacture. It is not a safety glazing product; it does not meet ANSI Z97.1 or the CPSC standards.

Laminated glass has two separate pieces of annealed, heat-strengthened, or tempered glass sandwiched around a layer of clear polyvinyl butyral (PVB). It was invented just over 100 years ago. The layers are bonded under high pressure. In the United States, it is used in car windshields. It is a safety glass product. One side can shatter from impact without the other side shattering, and when the glass shatters it does not delaminate into shards. Laminated glass is often used for frameless glass railings (figure 8).

Tempered glass (used in the rest of the car windows) is created during manufacture by rapidly cooling the outer surfaces of a piece of glass while the inner portion, sandwiched between the outer layers, remains viscous. After final cooling, the inner portion of the glass is in tension while the surfaces are in compression. The result is a piece of glass that is four times more resistant to impact than annealed glass. When tempered glass breaks, it fractures perpendicular to the plane of the surface, rather than parallel to it, resulting in harmless small cubes that are less likely to cause significant injury (figure 3).

The properties of tempered glass have been known for centuries, though it was not patented as an architectural glazing product until 1900. All glass is vulnerable to breakage from impact at the edges, and tempered glass is even more vulnerable in this regard; scratch the edge with a file and the entire piece might shatter. Because of this characteristic, tempered glass must be cut to size before the tempering process. Tempered glass has characteristic bows and warps due to the tempering process.

Approved plastics meeting ANSI Z97.1 are sometimes allowed in areas that otherwise require safety glazing. Limitations on its acceptable use arise from fire resistance ratings. While it may provide safety, a disadvantage of plastic is that it easily becomes permanently scratched. High-end acrylics can be durable and scratch-resistant. Expensive acrylics are typically an architectural specialty product and are not common. Plastic is often used in unit skylights.

Shattering the Myth of Wired Glass

Though wired glass has the advantage of preventing large shards, numerous injuries occur due to the rebound effect. Wired glass has only half the strength of annealed glass due to internal stresses from differing rates of contraction on cooling. It was once used as a form of safety glass, but that application has been abandoned since approximately 1970. The only prescribed use since then is for skylights and for windows in areas requiring fire separation.

Wired glass is commonly used in “vision panes” of swinging doors to allow someone to see persons on the other side. This violates the original CPSC standard, but was allowed until quite recently; when the choice has been between glass with a fire rating, or glass with a proper safety rating, the fire rating has taken precedence.
Greg Abel, founder of the Advocates for Safe Glass, came to this issue in a personal way. His son sustained a serious injury from wired glass at his school basketball court (figure 4). Sadly, this story is not unusual; approximately 2,500 such injuries occur each year in elementary schools alone. Mr. Abel founded a nonprofit organization to raise awareness of this issue and to lobby for enforcement of requirements for impact resistance. Why did we allow glass that does not meet impact resistance standards in doors and other public areas? A long protracted lawsuit from the wired glass manufacturers (all based offshore) tied up the CPSC and resulted in exceptions that remained in the building codes for decades. Fortunately, Mr. Abel's long efforts on behalf of public safety eventually paid off with successful amendments to the 2006 codes, and wired glass not meeting the CPSC standard is no longer allowed in locations subject to impact.

There are alternative products that provide both impact resistance and fire resistance. Pyro-Shield “Plus” (Pyro-Shield Safety) meets both test standards and is available. Other manufacturers also have products that are both fire and safety rated, including Inter-Edge, Safe-T (O’Keefe), Vetrotech and others. These alternative products do have a safety glazing bug in the glass, and Warnock-Hersey test labs has an evaluation and label for glass that is both fire rated and tempered. Just because a piece of wired glass has a “bug” on it, do not assume it is safety glass. Vision panes in doors might be subject to human impact, with a “bug” stating that the glass was evaluated by UL only for fire-resistance, and not to any other standard.

Locations Subject to Human Impact

What then, is a “hazardous location” for glazing? First, we should clarify that the use of the words “hazardous location” here means areas subject to human impact (other parts of the codes use the term for areas containing flammable materials). The International Building Code and the International Residential Code (IRC) provide us with definitions. These include areas where a person might be aware of the glass yet still slip and fall, such as a shower or walkway. Another hazard is glass that people might not be aware of, such as sliding doors where a person could think the door was open and walk (or run) straight into the glass. Glass that might be broken for forced entry is a hazardous location, such as glass near a doorknob.

The 2012 editions of the codes do not contain major changes in the rules, though they have organized the material in a more readable format. We will look at each of the hazardous locations in the same sequence as the 2012 IRC.

1) **Doors.** Glass panes in a door are required to be safety glass, including side-hinged, sliding, or bi-fold doors. Exceptions are made for lites so small that a 3-inch sphere cannot pass through them (figure 5), and for decorative glass, such as beveled, etched, or Dalle (stained) glass.

Old sliding doors are considered so unsafe that some municipalities, such as Los Angeles, require that the glass be replaced or protected with safety film upon sale of the property. Courts have upheld liability claims against landlords for injuries caused by unsafe glass in shower doors. When inspecting an older apartment, inspectors might save the tenants from injury, and the landlord from an expensive lawsuit, by recommending older glass be replaced with safety glass.
2) Sidelites. These are defined as any glass panel where the vertical edge of the glazing is within a 24-inch arc of either vertical edge of the door in a closed position, and where the lowest exposed edge of the glazing is less than 60 inches above the floor or walking surface. Decorative glass is exempt. Glass which is within the 24-inch arc but separated from the doorway by an intervening barrier is also exempt (figure 6). This exemption seems to imply that the danger is greater when someone could open the door and push an unsuspecting person on the other side into the perpendicular sidelite. Since they would be pushed away from the sidelite on the latch side, it is exempt, while the one on the hinge side is not. The perpendicular sidelite in figure 11 requires safety glass because it is on the hinge side. This exception does not apply to commercial buildings.

For these windows, there are exceptions for decorative glass, as well as an exception when a protective bar is installed within 34 – 38 inches above the floor, and the bar can withstand a horizontal load of 50 pounds per foot without contacting the glass (figure 7). The cross-sectional height of the bar must be at least 1½ inches.

3) Windows. Glazing in individual windows must be safety glass when meeting all four of the following conditions (figure 5):

1. Greater than 9 square feet, and
2. Lower edge less than 18 inches from the floor, and
3. Upper edge more than 36 inches from the floor, and
4. A walking surface within 36 inches horizontally of the window.

Figure 7 – Protective bar in front of window

One reason for these windows to be safety glass is because they can be mistaken for a door opening. Many window manufacturers supply windows that have a muntin at the 18 inch height to divide the window into two lites, neither of which are then required to be safety glass.

Absent from this section is any rule for safety glazing for smaller windows close to the floor. Window guards or devices to restrict the opening size are required when the sill of an openable window is less than 2 feet from the floor and the drop outside the window is 6 feet or more. This protective measure is designed to prevent children from falling. The much more common situation where children experiment with their toys by banging them against magical transparent objects is not addressed.

4) Guards and Railings. All glass in railings and guards is required to be safety glass, regardless of height above the walking surface. Laminated glass is usually chosen for these locations (figure 8).
5) **Wet Surfaces.** Glazing in walls, doors, and enclosures for showers, tubs, saunas, whirlpools, steam rooms, spas, hot tubs, and indoor or outdoor swimming pools must be safety glass. The rule applies whenever the bottom exposed edge of the glazing is less than 60 inches above any standing or walking surface. In earlier editions of some codes, the “standing surface” was considered to be the drain inlet level of the tub or shower. Many tubs today (especially whirlpools) have adjacent surfaces which could serve as a step or other area to stand upon, and the 60-inch measurement should begin at those surfaces (figure 9).

Figure 9 – Whirlpool tub with adjacent window

There are basically no exceptions to this rule, though the 2009 codes did introduce a clarification that affects how the rule is measured. Glass that is more than 5 feet horizontally from the water’s edge of bathtubs, spas, whirlpools, and swimming pools does not automatically have to be safety glass. Suppose there were a freestanding tub in a bathroom. Technically, all of the walls of that room are “enclosing” the tub, and under previous editions of the code would require safety glass even if they were well out of harm’s way from anyone slipping near the tub.

The 2012 IRC has a small addition to the rules for wet areas. In a multiple glazing assembly, such as dual-pane or triple-pane glass, all of the panes must be safety glass, even those on the outboard side of the wet area.

6) **Stairs and Ramps.** Glazing near the walking surface of stairs, landings, and ramps must be safety glass when it is within 36 inches horizontally from the walking surface, and less than 36 inches above the plane of the walking surface. An exception allows a protective bar as with item 3 above.

7) **Bottom Stair Landing.** Glazing adjacent to the bottom landing of stairs must be safety glass when it is within 60 inches horizontally of the bottom stair tread and less than 36 inches above the landing (figure 10). The idea here is that a person falling down the stairs will roll into the landing. There is an exception for guards that intervene between the landing and the glass and are at least 18 inches from the glass.

Figure 10 – Glass in stair landing

Exempt Glazing

Jalousie windows (louvered slats) are exempt. Their edges must be smooth, and they must be at least 3/16 inches thick. These windows are popular in hot climates, though they do not completely seal out air and water. They are less popular today.

Glass unit masonry that is properly installed is exempt from safety glazing rules, even in showers (figure 11). Many of these are made with acrylics. The top and bottom courses must be secured, and they cannot bear any other loads.

Figure 11 – Glass unit masonry enclosing shower. Note that the sidelite at the right would not require safety glass if the door were hinged on the other side.
Mirrors, including those on wardrobe doors, are exempt if they are on a solid surface that provides a continuous backing support. While the type of support is not defined in the codes, within the glazing industry it is understood that this means an acrylic or fibered backing material. When such a mirror cracks, the glass shards remain adhered to the backing, and do not pose an immediate hazard. Mounting an unabacked mirror to a wall with mastic does not qualify as a “continuous backing support.”

Identifying Safety Glass

An etched label as in figure 2 is required for tempered safety glass, and has been since the first mention of tempered glass in the codes. A full label is required on at least one lite of multiple pane assemblies, and the other lites in the assembly can be marked with only the “16 CFR 1201” designation if they do not exceed one square foot in exposed area. The glass thickness is usually included in the label.

Though glass must meet the CPSC and/or ANSI standards, it does not require third-party testing or certification; the markings are applied by the manufacturer. If the manufacturer chooses to do so, they can submit their products for third-party testing by the Safety Glazing Certification Council (SGCC). They maintain a directory of certified products, including the contact information for each specific manufacturing site. The identifying mark on the glass will then include the SGCC number (figure 2). A new CPSC rule proposed in 2010 has been interpreted as a requirement for the labeling to include the manufacturer’s contact information. Though this rule is not fully implemented, compliance might be achieved by the voluntary SGCC process.

Another labeling exemption is provided for tempered spandrel glass (seldom found in residential applications). It is a type of opaque glass that is heat-strengthened by fusing a ceramic coating to the surface, and it is used for commercial curtain walls. An etched label could have a different coefficient of expansion and cause the glass to break, so spandrel glass is allowed to have a removable paper label.

Laminated glass is sometimes labeled, though most codes do not require it. When it is labeled, the reference on the bug will typically be to DOT – the Department of Transportation. Laminated glass can be identified by the reflection in the glass – if you hold your hand to it, you will see multiple reflections. With a little practice, these are readily distinguishable from the two reflections you might see from the inner and outer surfaces of a piece of non-laminated glass (figure 12).

![Figure 12 – Laminated glass reflections](image)

Inspectors are often baffled by glass that has a frame obscuring the label, or in the case of shower doors, a soap or hard-water residue obscuring the glass. It is possible to verify that tempered glass is present by using a pair of polarized light lenses. Normally, if you hold two such lenses over your flashlight, and rotate the lenses to where their polarities are at 90 degrees to each other, all light will be blocked. If you do this with a pane of tempered glass between them, distinctive black lines will appear as you rotate the lenses toward total blackness (figure 13).

![Figure 13 – Polarized light testing](image)

Many owners and architects find the identifying bugs to be unsightly. Once in a while, building departments will allow omission on multi-lite doors. Such installations might be for a historical building where a door had custom-made pieces of tempered glass installed without a bug on them. Though the building code sections on glazing have no provision for omitting the bug, building departments can allow it through the administrative provisions for “Alternate Materials and Methods.” In such cases, there must be written documentation on file with the building department.
Alternatives to Replacement

Thousands of houses built in the 50s through the 70s have large floor-to-ceiling windows of ordinary glass, or have patio doors that are not safety glass. In lieu of replacement, it is possible to strengthen these doors and windows with products such as Scotchshield™ safety film from 3M. Applied properly, the material is durable, effective, and not noticeable. An installer can apply a label self-certifying that the glass complies with the CPSC standard (figure 14). ICC Evaluation Service legacy report 94-41 states that the product does qualify as safety glass when properly installed. Many jurisdictions accept this, and the label is not likely to be present with a homeowner-applied film. Inspectors can generally tell if film is present because there will be a slight gap at the edges of the glass.

Safety Hazards not Addressed by Codes

At the beginning of this article, we stated that the codes look at possible sources of impact with architectural glass and provide regulations for mitigating the effects of that impact. The codes alone are not a substitute for an inspector to put on their thinking cap and ask themselves the common-sense questions about what constitutes a hazard. Hazardous glazing could be found in many places which are not regulated by the code.

Though window seats might be designed with cushions and pose an invitation for persons to lean on the glass, safety glazing is not required (figure 15). Large pieces of glass that do not meet all the conditions of item 3 could still become flying shrapnel in high winds or in earthquakes. A home inspector in Virginia once was a party to an injury where a double-hung window with a broken sash cord fell and sent a piece of glass flying into a child, who barely survived. Safety glass is not required in cabinet doors Fireplace doors are required to be impact and heat resistant per UL 127, though that does not necessarily mean that they will be marked as containing tempered glass. Furniture is another unregulated area. Greg Abel estimates that approximately 20,000 people a year are injured by breaking glass tabletops, including coffee tables. Most of those injured are children.

Acknowledgments and resources

Special thanks to Greg Abel for proving that a committed individual can make a difference. We will never know how many people will have benefited from his work; his success is in preventing more persons from becoming statistics. Thanks to Jim Katen and Sandy Bourseau for their editorial guidance and contributions.

The Advocates for Safe Glass:
www.afsgi.org/
Safety Glazing Certification Council:
www.sgcc.org
Glass Association of North America
www.glasswebsite.com
Glazing industry code committee
http://www.glasswebsite.com/gicc/
Federal law:
http://www.access.gpo.gov/nara/cfr/waisidx_03/16cfr1201_03.html

An earlier version of this article appeared in the May 2007 edition of the ASHI Reporter.

Douglas Hansen is a technical writer and retired home inspector. He is the principle author of the Code Check series of field guides to building codes. He will be presenting the International Residential Code track at Inspection World in Phoenix, January 4-7, 2012.